
Penetration Test Report

Open Technology Fund

V 1.0
Amsterdam, August 28th, 2021
Public

Document Properties

Client Open Technology Fund

Title Penetration Test Report

Targets Hypha web application (https://github.com/HyphaApp)
opentech.fund
apply.opentech.fund

Version 1.0

Pentester Stefan Vink

Authors Stefan Vink, Abhinav Mishra

Reviewed by Abhinav Mishra

Approved by Melanie Rieback

Version control

Version Date Author Description

0.1 August 24th, 2021 Stefan Vink Initial draft

0.2 August 25th, 2021 Stefan Vink Ready-to-Review

1.0 August 28th, 2021 Abhinav Mishra Reviewed Report

Contact

For more information about this document and its contents please contact Radically Open Security B.V.

Name Melanie Rieback

Address Science Park 608
1098 XH Amsterdam
The Netherlands

Phone +31 (0)20 2621 255

Email info@radicallyopensecurity.com

Radically Open Security B.V. is registered at the trade register of the Dutch chamber of commerce under number 60628081.

Table of Contents

1 Executive Summary 5
1.1 Introduction 5

1.2 Scope of work 5

1.3 Project objectives 5

1.4 Timeline 5

1.5 Results In A Nutshell 5

1.6 Summary of Findings 6

1.6.1 Findings by Threat Level 8

1.6.2 Findings by Type 8

1.7 Summary of Recommendations 9

2 Methodology 13
2.1 Planning 13

2.2 Risk Classification 13

3 Reconnaissance and Fingerprinting 15

4 Findings 16
4.1 OTF-010 — XSS in TinyMCE 16

4.2 OTF-001 — Support for Weak TLS 1.0 and TSL 1.1 19

4.3 OTF-003 — Insecure 3DES Ciphers in use 21

4.4 OTF-007 — Unverified Email Change 26

4.5 OTF-013 — Unverified 2FA change. 28

4.6 OTF-018 — Improper Input Validation 29

4.7 OTF-002 — Obsoleted CBC ciphers 32

4.8 OTF-004 — Open Redirect in Subscribe Newletter 34

4.9 OTF-005 — Insecure Password Reset 36

4.10 OTF-006 — Lack of Anti Automation 37

4.11 OTF-008 — XSS in Footer 39

4.12 OTF-009 — Low privileged user able to Purge CDN and Cache. 41

4.13 OTF-011 — XSS in Used By 43

4.14 OTF-012 — XSS in Reviewer Role. 46

4.15 OTF-014 — User Enumeration with Email Address Change 48

4.16 OTF-015 — XSS in Review Form 50

4.17 OTF-016 — Django SECRET_KEY not random 53

4.18 OTF-017 — Arbitrary Document File Upload 55

4.19 OTF-019 — Outdated Packages are in use. 58

5 Non-Findings 65
5.1 NF-020 — Reviewers are able to see all submissions. 65

6 Future Work 67

7 Conclusion 68

Appendix 1 Testing team 69

Public

1 Executive Summary

1.1 Introduction

Between August 4, 2021 and August 23, 2021, Radically Open Security B.V. carried out a penetration test for Open

Technology Fund.

This report contains our findings as well as detailed explanations of exactly how ROS performed the penetration test.

1.2 Scope of work

The scope of the penetration test was limited to the following target(s):

• Hypha web application (https://github.com/HyphaApp)

• opentech.fund

• apply.opentech.fund

The scoped services are broken down as follows:

• Frontend and backend pentest of the Hypha web app including testing of the user roles. : 7-9 days

• Retest and fix verification before publication of report: 0-1 days

• Project management and review of report.: 1 days

• Total effort: 8 - 11 days

1.3 Project objectives

ROS will perform a penetration test of the Hypha web application with OTF in order to assess the security of this. To do

so ROS will access the web application and guide OTF in attempting to find vulnerabilities, exploiting any such found to

try and gain further access and elevated privileges.

1.4 Timeline

The Security Audit took place between August 4, 2021 and August 23, 2021.

1.5 Results In A Nutshell

During this crystal-box penetration test we found 1 Elevated, 5 Moderate and 13 Low-severity issues.

Executive Summary 5

One Elevated issue (which has been resolved) OTF-010 (page 16) was found that would allow an unauthenticated

or low privileged user to send a malicious XSS payload (e.g. containing session hijacking, credential stealing, malware)

to high privileged users (e.g. staff members and admins). This could result in gaining access to high privileged accounts

which would lead to accessing restricted data.

The Moderate and Low issues found were mainly related to TLS Misconfiguration OTF-001 (page 19) OTF-002 (page

32) OTF-003 (page 21) , Open Redirect OTF-004 (page 34), Insecure Password Reset OTF-005 (page 36),

Lack of Anti Automation OTF-006 (page 37), Unverified Email and 2FA Change OTF-007 (page 26) OTF-013

(page 28), Broken ACL OTF-009 (page 41), User Enumeration OTF-014 (page 48), Weak Configuration

OTF-016 (page 53) , Arbitrary File Upload OTF-017 (page 55), Outdated software OTF-019 (page 58) and

Improper Input Validation OTF-008 (page 39) OTF-010 (page 16) OTF-011 (page 43) OTF-012 (page 46)

OTF-015 (page 50) OTF-018 (page 29) resulting in XSS.

The Moderate and Low issues did not have a major immediate risk but when resolved would make it harder for

adversaries to succeed to launch attacks against the application, infrastructure and users.

1.6 Summary of Findings

ID Type Description Threat level

OTF-010 XSS Several form fields that use TinyMCE allow the input of
dangerous characters resulting in XSS when editing a
form.

Elevated

OTF-001 TLS Misconfiguration opentech.fund and apply.opentech.fund accept
connections encrypted using TLS 1.0 and/or TLS 1.1.
TLS 1.0 has a number of cryptographic design flaws.
Modern implementations of TLS 1.0 mitigate these
problems, but newer versions of TLS (TLS 1.2) are
designed against these flaws and should be used
whenever possible.

Moderate

OTF-003 TLS Misconfiguration Opentech.fund and Apply.opentech.fund support insecure
3DES Ciphers.

Moderate

OTF-007 Unverified Change There are no additional authentication checks, such as
requiring a password or two-factor token, preventing
logged in users from changing their email address. Email
addresses are used for account recovery operations that
can be abused by attackers.

Moderate

OTF-013 Unverified Change Two-factor authentication (2FA) can be disabled without
providing the current password.

Moderate

OTF-018 Insufficient Input
Validation

The application incorrectly validates input that can affect
the control flow or data flow of a program.

Moderate

OTF-002 TLS Misconfiguration Opentech.fund and Apply.opentech.fund are configured to
support Cipher Block Chaining (CBC) encryption.

Low

OTF-004 Open Redirect The Subscribe Newletter is vulnerable to Open
Redirection.

Low

6 Radically Open Security B.V.

Public

OTF-005 Insecure Password The password reset functionality is by default set to 8
days and the reset token remains the same until it has
been changed.

Low

OTF-006 Missing Anti-
Automation

The application does not contain proper anti-automation
to stop someone maliciously using functionality such
as the Password Reset, Two-Factor-Authentication,
Two-Factor-Authentication Backup Login, Newsletter
subscription, Apply Forms and User Login.

Low

OTF-008 XSS The Footer incorrectly validates input that results in
Cross-Site-Scripting (XSS).

Low

OTF-009 Broken ACL Low privileged users are able to Purge CDN and Cache. Low

OTF-011 XSS The Used By field incorrectly validates input that results in
Cross-Site-Scripting (XSS).

Low

OTF-012 XSS Cross-Site-Scripting (XSS) was found in Reviewer Role. Low

OTF-014 User Enumeration Valid users can be found by abusing the Profile Change
Email address functionality.

Low

OTF-015 XSS Cross-Site-Scripting (XSS) was found in the Review
Forms.

Low

OTF-016 Security
Misconfiguration

The Django SECRET_KEY is hardcoded and using a
default value.

Low

OTF-017 Arbitrary File Upload Arbitrary files can be uploaded using the Document
File Upload functionality since there are no restrictions
configured.

Low

OTF-019 Outdated Software Outdated Packages which contain known vulnerabilities
are in use.

Low

Executive Summary 7

1.6.1 Findings by Threat Level

68.4%

26.3%

5.3%

Elevated (1)

Moderate (5)

Low (13)

1.6.2 Findings by Type

5.3%
5.3%

5.3%

5.3%

5.3%

5.3%

5.3%

5.3%
5.3% 10.5%

15.8%

26.3%

XSS (5)

Tls misconfiguration (3)

Unverified change (2)

Insufficient input validation (1)

Open redirect (1)

Insecure password (1)

Missing anti-automation (1)

Broken acl (1)

User enumeration (1)

Security misconfiguration (1)

Arbitrary file upload (1)

Outdated software (1)

8 Radically Open Security B.V.

Public

1.7 Summary of Recommendations

ID Type Recommendation

OTF-010 XSS All user input as well as output to users must be strictly filtered. Within these
checks it is necessary to implement filter mechanisms that operate on a white
list basis instead of a black list basis. It is recommended that parameters or
input fields that can only consist of numerical values are only accepted by
the server if they are in fact numeric. All checks have to be performed on the
server and not on the client-side. To avoid cross-site scripting it is necessary
to substitute special characters like [;()”´`,<>/] for their HTML equivalents.
It is not sufficient to only filter special HTML tags like "script" because
there exist countless alternatives to successfully exploit cross-site scripting
vulnerabilities. More information can be found at: https://www.owasp.org/
index.php/Cross_Site_Scripting

OTF-001 TLS Misconfiguration Disable support of TLS 1.0. If possible also disable TLS 1.1. TLS 1.1 lacks
support for current and recommended cipher suites. Ciphers that support
encryption before MAC computation, and authenticated encryption modes
such as GCM cannot be used with TLS 1.1. It is strongly recommended to
use TLS 1.2 and higher.

OTF-003 TLS Misconfiguration Disable the use of the insecure 3DES ciphers.

OTF-007 Unverified Change Ensure the current password or a two-factor authentication token is required
whenever a user attempts to change their email address.

OTF-013 Unverified Change Require the user to provide their current password or token before 2FA can
be disabled to add an additional layer of security.

OTF-018 Insufficient Input
Validation

Preventing any dangerous characters in the first place could stop a lot of
potential attacks.

• Assume all input is malicious. Use an 'accept known good' input
validation strategy i.e. use a whitelist of acceptable inputs that strictly
conform to specifications. Reject any input that does not strictly
conform to specifications, or transform it into something that does.

• When performing input validation, consider all potentially relevant
properties, including length, type of input, the full range of acceptable
values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules.

• Do not rely exclusively on looking for malicious or malformed inputs
(i.e. do not rely on a blacklist). A blacklist is likely to miss at least one
undesirable input, especially if the code's environment changes. This
can give attackers enough room to bypass the intended validation.
However blacklists can be useful for detecting potential attacks
or determining which inputs are so malformed that they should be
rejected outright.

• For any security checks that are performed on the client side, ensure
that these checks are duplicated on the server side. Attackers can
bypass the client-side checks by modifying values after the checks
have been performed, or by changing the client to remove the client-
side checks entirely. Then these modified values would be submitted
to the server.

• Even though client-side checks provide minimal benefits with respect
to server-side security, they are still useful. First, they can support

Executive Summary 9

https://www.owasp.org/index.php/Cross_Site_Scripting
https://www.owasp.org/index.php/Cross_Site_Scripting

intrusion detection. If the server receives input that should have
been rejected by the client, then it may be an indication of an attack.
Second, client-side error-checking can provide helpful feedback to
the user about the expectations for valid input. Third, there may be a
reduction in server-side processing time for accidental input errors,
although this is typically a small savings.

• When your application combines data from multiple sources, perform
the validation after the sources have been combined. The individual
data elements may pass the validation step but violate the intended
restrictions after they have been combined. Inputs should be decoded
and canonicalised to the application's current internal representation
before being validated.

• Make sure that your application does not inadvertently decode the
same input twice. Such errors could be used to bypass whitelist
schemes by introducing dangerous inputs after they have been
checked.

• Consider performing repeated canonicalisation until your input does
not change any more. This will avoid double-decoding and similar
scenarios, but it might inadvertently modify inputs that are allowed to
contain properly-encoded dangerous content.

OTF-002 TLS Misconfiguration Disable the use of TLS CBC ciphers. De-prioritizing these ciphers can also
help minimize successful exploitation of real-world attacks. The attacker
typically cannot force the selection of a specific cipher and therefore can only
execute a CBC padding oracle attack if the client/server normally negotiates
a vulnerable cipher.

OTF-004 Open Redirect • Do not use user input for URLs.
• If dynamic URLs are required, use whitelisting. Make a list of valid,

accepted URLs and do not accept other URLs.

OTF-005 Insecure Password Configure the password reset timeout to a maximum of 1 hour by using the
PASSWORD_RESET_TIMEOUT

OTF-006 Missing Anti-
Automation

Apply an anti-automation on the Password Reset, Two-Factor-Authentication,
Two-Factor-Authentication Backup Login, Newsletter subscription, Apply
Forms and User Login request. One of the common ways to do it would be
implementing a Captcha (hCAPTCHA is very effective) on those pages and
only show and enforce the use of it after a certain amount of requests per IP.

OTF-008 XSS This appears to be by design (functionality is only accessible as a high priv
user) but allowing dangerous tags in the first place is not best practice. In this
case it is better to use a whitelist with accepted tags and attributes to limit the
attack vector.

OTF-009 Broken ACL Verify whether the current user is allowed to access the requested resource
and deny access if this is not the case.

OTF-011 XSS All user input as well as output to users must be strictly filtered. Within these
checks it is necessary to implement filter mechanisms that operate on a white
list basis instead of a black list basis. It is recommended that parameters or
input fields that can only consist of numerical values are only accepted by
the server if they are in fact numeric. All checks have to be performed on the
server and not on the client-side. To avoid cross-site scripting it is necessary
to substitute special characters like [;()”´`,<>/] for their HTML equivalents.
It is not sufficient to only filter special HTML tags like "script" because

10 Radically Open Security B.V.

Public

there exist countless alternatives to successfully exploit cross-site scripting
vulnerabilities. More information can be found at: https://www.owasp.org/
index.php/Cross_Site_Scripting

OTF-012 XSS All user input as well as output to users must be strictly filtered. Within these
checks it is necessary to implement filter mechanisms that operate on a white
list basis instead of a black list basis. It is recommended that parameters or
input fields that can only consist of numerical values are only accepted by
the server if they are in fact numeric. All checks have to be performed on the
server and not on the client-side. To avoid cross-site scripting it is necessary
to substitute special characters like [;()”´`,<>/] for their HTML equivalents.
It is not sufficient to only filter special HTML tags like "script" because
there exist countless alternatives to successfully exploit cross-site scripting
vulnerabilities. More information can be found at: https://www.owasp.org/
index.php/Cross_Site_Scripting

OTF-014 User Enumeration Modify the functionality to return only a generic response making it
impossible to distinguish between a valid username and an invalid username
and implement a Captcha (see also finding OTF-006) .

OTF-015 XSS All user input as well as output to users must be strictly filtered. Within these
checks it is necessary to implement filter mechanisms that operate on a white
list basis instead of a black list basis. It is recommended that parameters or
input fields that can only consist of numerical values are only accepted by
the server if they are in fact numeric. All checks have to be performed on the
server and not on the client-side. To avoid cross-site scripting it is necessary
to substitute special characters like [;()”´`,<>/] for their HTML equivalents.
It is not sufficient to only filter special HTML tags like "script" because
there exist countless alternatives to successfully exploit cross-site scripting
vulnerabilities. More information can be found at: https://www.owasp.org/
index.php/Cross_Site_Scripting

OTF-016 Security
Misconfiguration

• Automatically generate Strong Random Secret key instead of using a
static key.

• An alternative (but less secure) is to show a warning message to
the administrator and prevent the application to (fully) work until the
SECRET_KEY has been changed to something more secure.

OTF-017 Arbitrary File Upload Verify all upload functionality and make sure that arbitrary upload is not
allowed. In general, proper mitigation for insecure file upload usually involves
a combination of various approaches:

• Blacklisting of dangerous file extensions
• Whitelisting of acceptable file types
• Content-Type entity in the header of the request indicates the Internet

media type of the message content
• Using file recognizer that verifies file is of correct type
• Adding the “Content-Disposition: Attachment” and “X-Content-Type-

Options: nosniff” headers to the response of static files will secure
the website against Flash or PDF-based cross-site content-hijacking
attacks. It is recommended that this practice be performed for all of the
files that users need to download in all the modules that deal with a
file download. Although this method does not fully secure the website
against attacks using Silverlight or similar objects, it can mitigate the
risk of using Adobe Flash and PDF objects, especially when uploading
PDF files is permitted.

Executive Summary 11

https://www.owasp.org/index.php/Cross_Site_Scripting
https://www.owasp.org/index.php/Cross_Site_Scripting
https://www.owasp.org/index.php/Cross_Site_Scripting
https://www.owasp.org/index.php/Cross_Site_Scripting
https://www.owasp.org/index.php/Cross_Site_Scripting
https://www.owasp.org/index.php/Cross_Site_Scripting

• Instant anti-virus checking with a back-end script or service
A specific combination of approaches should consider technical and process
constraints, also limitations imposed by the application design. More info can
be found at OWASP Unrestricted File Upload.

OTF-019 Outdated Software It is still recommended to always use the latest version where possible.

12 Radically Open Security B.V.

https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload

Public

2 Methodology

2.1 Planning

Our general approach during penetration tests is as follows:

1. Reconnaissance

We attempt to gather as much information as possible about the target. Reconnaissance can take two forms:

active and passive. A passive attack is always the best starting point as this would normally defeat intrusion

detection systems and other forms of protection afforded to the app or network. This usually involves trying to

discover publicly available information by visiting websites, newsgroups, etc. An active form would be more

intrusive, could possibly show up in audit logs and might take the form of a social engineering type of attack.

2. Enumeration

We use various fingerprinting tools to determine what hosts are visible on the target network and, more

importantly, try to ascertain what services and operating systems they are running. Visible services are researched

further to tailor subsequent tests to match.

3. Scanning

Vulnerability scanners are used to scan all discovered hosts for known vulnerabilities or weaknesses. The results

are analyzed to determine if there are any vulnerabilities that could be exploited to gain access or enhance

privileges to target hosts.

4. Obtaining Access

We use the results of the scans to assist in attempting to obtain access to target systems and services, or to

escalate privileges where access has been obtained (either legitimately though provided credentials, or via

vulnerabilities). This may be done surreptitiously (for example to try to evade intrusion detection systems or rate

limits) or by more aggressive brute-force methods. This step also consist of manually testing the application

against the latest (2017) list of OWASP Top 10 risks. The discovered vulnerabilities from scanning and manual

testing are moreover used to further elevate access on the application.

2.2 Risk Classification

Throughout the report, vulnerabilities or risks are labeled and categorized according to the Penetration Testing Execution

Standard (PTES). For more information, see: http://www.pentest-standard.org/index.php/Reporting

These categories are:

• Extreme

Extreme risk of security controls being compromised with the possibility of catastrophic financial/reputational

losses occurring as a result.

Methodology 13

http://www.pentest-standard.org/index.php/Reporting

• High

High risk of security controls being compromised with the potential for significant financial/reputational losses

occurring as a result.

• Elevated

Elevated risk of security controls being compromised with the potential for material financial/reputational losses

occurring as a result.

• Moderate

Moderate risk of security controls being compromised with the potential for limited financial/reputational losses

occurring as a result.

• Low

Low risk of security controls being compromised with measurable negative impacts as a result.

14 Radically Open Security B.V.

Public

3 Reconnaissance and Fingerprinting

We were able to gain information about the software and infrastructure through the following automated scans. Any

relevant scan output will be referred to in the findings.

• nmap – http://nmap.org

• testssl.sh – https://github.com/drwetter/testssl.sh

Reconnaissance and Fingerprinting 15

http://nmap.org
https://github.com/drwetter/testssl.sh

4 Findings

We have identified the following issues:

4.1 OTF-010 — XSS in TinyMCE

Vulnerability ID: OTF-010 Status: Resolved

Vulnerability type: XSS

Threat level: Elevated

Description:

Several form fields that use TinyMCE allow the input of dangerous characters resulting in XSS when editing a form.

Technical description:

Send the following XSS payload:

This payload is accepted. When opening the actual submission (e.g. /apply/submissions/10/) the XSS has been stripped

from the output:

16 Radically Open Security B.V.

Public

However when editing using TinyMCE (e.g. by staff member or admin) the XSS is shown:

Retest update:
This has been resolved:

Findings 17

Impact:

An unauthenticated user or low-privileged user (since everyone can register an account) is able to create a malicious

XSS payload which could result in session hijacking, credential stealing, or infecting staff members with malware.

Recommendation:

All user input as well as output to users must be strictly filtered. Within these checks it is necessary to implement filter

mechanisms that operate on a white list basis instead of a black list basis. It is recommended that parameters or input

fields that can only consist of numerical values are only accepted by the server if they are in fact numeric. All checks

have to be performed on the server and not on the client-side. To avoid cross-site scripting it is necessary to substitute

special characters like [;()”´`,<>/] for their HTML equivalents. It is not sufficient to only filter special HTML tags like "script"

because there exist countless alternatives to successfully exploit cross-site scripting vulnerabilities.

More information can be found at: https://www.owasp.org/index.php/Cross_Site_Scripting

18 Radically Open Security B.V.

https://www.owasp.org/index.php/Cross_Site_Scripting

Public

4.2 OTF-001 — Support for Weak TLS 1.0 and TSL 1.1

Vulnerability ID: OTF-001 Status: Resolved

Vulnerability type: TLS Misconfiguration

Threat level: Moderate

Description:

opentech.fund and apply.opentech.fund accept connections encrypted using TLS 1.0 and/or TLS 1.1. TLS 1.0

has a number of cryptographic design flaws. Modern implementations of TLS 1.0 mitigate these problems, but newer

versions of TLS (TLS 1.2) are designed against these flaws and should be used whenever possible.

Technical description:

The PCI Council mandated that organizations migrate from TLS 1.0 to TLS 1.1 or higher before June 30, 2018, or risk

being considered in breach of PCI DSS.

Since March 2020 Apple, Google, Microsoft, and Mozilla have disabled the use of TLS 1.0 and 1.1 in their browsers.

We tested the SSL configuration using testssl.sh:

Findings 19

Retest update:
This has been resolved:

20 Radically Open Security B.V.

Public

Impact:

Accepting TLS 1.0 and TLS 1.1 makes the data in transit vulnerable to attacks in which an attacker can capture the

encrypted data and decrypt it.

Recommendation:

Disable support of TLS 1.0. If possible also disable TLS 1.1. TLS 1.1 lacks support for current and recommended cipher

suites. Ciphers that support encryption before MAC computation, and authenticated encryption modes such as GCM

cannot be used with TLS 1.1. It is strongly recommended to use TLS 1.2 and higher.

4.3 OTF-003 — Insecure 3DES Ciphers in use

Vulnerability ID: OTF-003 Status: Resolved

Vulnerability type: TLS Misconfiguration

Threat level: Moderate

Findings 21

Description:

Opentech.fund and Apply.opentech.fund support insecure 3DES Ciphers.

Technical description:

The following webservers are configured to support insecure Triple DES (3DES).

Output from the testssl.sh tool:

22 Radically Open Security B.V.

https://testssl.sh

Public

Retest update:

This has been resolved.

Findings 23

24 Radically Open Security B.V.

Public

Impact:

An attacker with a MitM (Machine in the Middle) position can potentially capture and intercept communication between

server and clients.

Recommendation:

Disable the use of the insecure 3DES ciphers.

Findings 25

4.4 OTF-007 — Unverified Email Change

Vulnerability ID: OTF-007

Vulnerability type: Unverified Change

Threat level: Moderate

Description:

There are no additional authentication checks, such as requiring a password or two-factor token, preventing logged in

users from changing their email address. Email addresses are used for account recovery operations that can be abused

by attackers.

Technical description:

The Email address can be changed in Hypha and in Wagtail.

Changing the Email address in Hypha:

26 Radically Open Security B.V.

Public

Changing the Email address in Wagtail:

Findings 27

Impact:

An attacker who gains temporary access to a victim's account (be it by exploiting a different vulnerability or by gaining

physical access to the victim's machine, a common scenario in office settings) can change the victim's email address to

a different address controlled by the attacker, enabling them to take full control of the victim's account by using the forgot

password functionality.

Recommendation:

Ensure the current password or a two-factor authentication token is required whenever a user attempts to change their

email address.

4.5 OTF-013 — Unverified 2FA change.

Vulnerability ID: OTF-013

Vulnerability type: Unverified Change

Threat level: Moderate

Description:

Two-factor authentication (2FA) can be disabled without providing the current password.

Technical description:

Two-factor authentication (2FA) is an electronic authentication method in which a user is granted access to a website

or application only after successfully presenting two pieces of evidence to an authentication mechanism, for instance a

password and a One-Time-Password.

It was found that 2FA can be disabled without providing the current user's password:

28 Radically Open Security B.V.

Public

Impact:

This could allow an adversary to disable the user's 2FA, for instance by using a XSS attack or other attack.

Recommendation:

Require the user to provide their current password or token before 2FA can be disabled to add an additional layer of

security.

4.6 OTF-018 — Improper Input Validation

Vulnerability ID: OTF-018

Vulnerability type: Insufficient Input Validation

Threat level: Moderate

Description:

The application incorrectly validates input that can affect the control flow or data flow of a program.

Findings 29

Technical description:

Through the application dangerous input is accepted which resulted in several XSS vulnerabilities. It is important to not

allow dangerous input in the first place by rejecting it. This can be done by first clientside - and secondly using server

side validation.

The following form was sent containing dangerous characters and payload:

This results in the following data added to the database:

8190 {"email": "stefanpentest@gmail.com", "title": "Test<script>alert('blaat');</script>",
 "value": "777", "form_id": "654b9c40-fcbf-4c07-9e75-c9d85c093682", "duration": "1", "full_name":
 "<blaat>", "upload_url": "/upload/upload/", "baf64df2-33bd-47df-af4a-ec2033186447": "<p>blaat</
p>Test<script>alert('blaat');</script>"} 2021-08-23 16:47:45 17 19 7 in_discussion double
 [{"type": "title", "value": {"field_label": "Project name", "help_text": "", "help_link": "",
 "info": null}, "id": "9de92dc4-7941-4a59-a96c-a59f1906c901"}, {"type": "full_name", "value":
 {"field_label": "Name", "help_text": "", "help_link": "", "info": null}, "id": "bdd9d0f3-
a3db-4951-8d4b-64a54d8eefbf"}, {"type": "email", "value": {"field_label": "E-mail", "help_text":
 "", "help_link": "", "info": null}, "id": "81c2d467-9bb7-4e33-8cf6-29131afe8a3c"}, {"type":
 "value", "value": {"field_label": "Requested amount", "help_text": "", "help_link": "", "required":
 false, "info": null}, "id": "632db418-54e1-4a73-b426-7f66d488c934"}, {"type": "duration",
 "value": {"field_label": "Duration", "help_text": "", "help_link": "", "duration_type": "months",
 "info": null}, "id": "68d21e58-d459-49ac-b0e8-45c81c56b361"}, {"type": "rich_text", "value":
 {"field_label": "Project description", "help_text": "", "help_link": "", "required": false,
 "default_value": "", "word_limit": 1000}, "id": "baf64df2-33bd-47df-af4a-ec2033186447"}]
 blaatTestalert('blaat'); Test<script>alert('blaat');</script> <blaat> stefanpentest@gmail.com 777 1
 <blaat> stefanpentest@gmail.com Test<script>alert('blaat');</script> 6 8225 8225

The output shows that most of the malicious input has been accepted by the application while it is recommended to not

accept the input of potential malicious data in the first place to reduce the attack vector. For most payloads used in the

30 Radically Open Security B.V.

Public

application the Django internal XSS protection does a good job but this does not stop all XSS attacks as was shown in

several findings:

• OTF-008 (page 39)

• OTF-010 (page 16)

• OTF-011 (page 43)

• OTF-012 (page 46)

• OTF-015 (page 50)

This behavior has been found in most parts of the application as well and we would recommend the developer to

implement additional security to reduce the attack vector.

Impact:

Allowing dangerous input could lead to XSS.

Recommendation:

Preventing any dangerous characters in the first place could stop a lot of potential attacks.

• Assume all input is malicious. Use an 'accept known good' input validation strategy i.e. use a whitelist of

acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to

specifications, or transform it into something that does.

• When performing input validation, consider all potentially relevant properties, including length, type of input, the full

range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to

business rules.

• Do not rely exclusively on looking for malicious or malformed inputs (i.e. do not rely on a blacklist). A blacklist is

likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers

enough room to bypass the intended validation. However blacklists can be useful for detecting potential attacks or

determining which inputs are so malformed that they should be rejected outright.

• For any security checks that are performed on the client side, ensure that these checks are duplicated on

the server side. Attackers can bypass the client-side checks by modifying values after the checks have been

performed, or by changing the client to remove the client-side checks entirely. Then these modified values would

be submitted to the server.

• Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful.

First, they can support intrusion detection. If the server receives input that should have been rejected by the client,

then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the

user about the expectations for valid input. Third, there may be a reduction in server-side processing time for

accidental input errors, although this is typically a small savings.

Findings 31

• When your application combines data from multiple sources, perform the validation after the sources have been

combined. The individual data elements may pass the validation step but violate the intended restrictions after

they have been combined. Inputs should be decoded and canonicalised to the application's current internal

representation before being validated.

• Make sure that your application does not inadvertently decode the same input twice. Such errors could be used to

bypass whitelist schemes by introducing dangerous inputs after they have been checked.

• Consider performing repeated canonicalisation until your input does not change any more. This will avoid double-

decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-

encoded dangerous content.

4.7 OTF-002 — Obsoleted CBC ciphers

Vulnerability ID: OTF-002 Status: Unresolved

Vulnerability type: TLS Misconfiguration

Threat level: Low

Description:

Opentech.fund and Apply.opentech.fund are configured to support Cipher Block Chaining (CBC) encryption.

Technical description:

In cryptography, a padding oracle attack is an attack which uses the padding validation of a cryptographic message to

decrypt the ciphertext.

Padding oracle attacks are mostly associated with CBC mode decryption used within block ciphers.

In symmetric cryptography, the padding oracle attack can be applied to the CBC mode of operation, where the

'oracle' (usually a server) leaks data about whether the padding of an encrypted message is correct or not. Such data

can allow attackers to decrypt (and sometimes encrypt) messages through the oracle using the oracle's key, without

knowing the encryption key.

The web-server is configured to support Cipher Block Chaining (CBC) encryption:

32 Radically Open Security B.V.

Public

Findings 33

Impact:

An attacker properly positioned between a user and the server, for example in the same network segment as the victim,

may be able to obtain unencrypted network traffic between the user and the server.

Recommendation:

Disable the use of TLS CBC ciphers. De-prioritizing these ciphers can also help minimize successful exploitation of real-

world attacks. The attacker typically cannot force the selection of a specific cipher and therefore can only execute a CBC

padding oracle attack if the client/server normally negotiates a vulnerable cipher.

4.8 OTF-004 — Open Redirect in Subscribe Newletter

Vulnerability ID: OTF-004

Vulnerability type: Open Redirect

Threat level: Low

34 Radically Open Security B.V.

Public

Description:

The Subscribe Newletter is vulnerable to Open Redirection.

Technical description:

The Referer and Origin, which the user is able to control, are used for the URL. In the examples below the user will be

redirected to radicallyopensecurity.com instead of the Hypha web-application:

Findings 35

Impact:

Because the vulnerability can be only exploited via POST requests, its impact is very limited and it cannot be directly

used for common Open Redirect attacks such as phishing.

Recommendation:

• Do not use user input for URLs.

• If dynamic URLs are required, use whitelisting. Make a list of valid, accepted URLs and do not accept other URLs.

4.9 OTF-005 — Insecure Password Reset

Vulnerability ID: OTF-005

Vulnerability type: Insecure Password

Threat level: Low

Description:

The password reset functionality is by default set to 8 days and the reset token remains the same until it has been

changed.

Technical description:

Password link remains the same:

The link does change after the password (including using the same password) has been reset.

Default set to 8 days:

36 Radically Open Security B.V.

Public

Impact:

If the email of a user gets compromised, even if the user changes the associated email address, an attacker can still

hack into the victim's account using a password reset link sent to the older email.

Recommendation:

Configure the password reset timeout to a maximum of 1 hour by using the PASSWORD_RESET_TIMEOUT

4.10 OTF-006 — Lack of Anti Automation

Vulnerability ID: OTF-006

Vulnerability type: Missing Anti-Automation

Threat level: Low

Findings 37

Description:

The application does not contain proper anti-automation to stop someone maliciously using functionality such as the

Password Reset, Two-Factor-Authentication, Two-Factor-Authentication Backup Login, Newsletter subscription, Apply

Forms and User Login.

Technical description:

Example of abusing the password reset functionality.

200 password requests were issued within 5 seconds:

Result a flooded mailbox:

38 Radically Open Security B.V.

Public

Note that the client mentioned that they are using strong passwords and that high privileged accounts are using

mandatory 2FA. Passwords are checked against the Haveibeenpowned database as well. This makes successfully

brute-forcing account access not feasible but other attacks remain feasible.

Impact:

It is possible to automate the submission of this request with random data and flood the application's database with huge

data. It may (technically) also lead to DOS attack on the application/database.

Recommendation:

Apply an anti-automation on the Password Reset, Two-Factor-Authentication, Two-Factor-Authentication Backup Login,

Newsletter subscription, Apply Forms and User Login request. One of the common ways to do it would be implementing

a Captcha (hCAPTCHA is very effective) on those pages and only show and enforce the use of it after a certain amount

of requests per IP.

4.11 OTF-008 — XSS in Footer

Vulnerability ID: OTF-008

Vulnerability type: XSS

Threat level: Low

Description:

The Footer incorrectly validates input that results in Cross-Site-Scripting (XSS).

Technical description:

Add XSS Payload to footer:

Findings 39

Results in XSS:

40 Radically Open Security B.V.

Public

Impact:

This XSS can only be created and triggered by high privileged users (e.g staff and admin) making it a Low impact.

However it is still recommended to not allow XSS in the first place since a successful attack could lead to session hijack,

credential stealing, or infecting systems with malware.

Recommendation:

This appears to be by design (functionality is only accessible as a high priv user) but allowing dangerous tags in the first

place is not best practice. In this case it is better to use a whitelist with accepted tags and attributes to limit the attack

vector.

4.12 OTF-009 — Low privileged user able to Purge CDN and Cache.

Vulnerability ID: OTF-009

Vulnerability type: Broken ACL

Threat level: Low

Description:

Low privileged users are able to Purge CDN and Cache.

Technical description:

Staff members (high privileged users), Editors and Moderators do not see the Purge CDN and Cache functionality in the

User Interface but are still able to access and use the functionality by using the following URL's:

http://apply.hypha.test:8090/admin/cache/
http://apply.hypha.test:8090/admin/purge/

Findings 41

42 Radically Open Security B.V.

Public

Impact:

Impact is low since no possibility of abuse was found during testing, but new introduced functionality could make this

issue more severe. In general it is recommended to prevent users accessing functionality they should not have access

to.

Recommendation:

Verify whether the current user is allowed to access the requested resource and deny access if this is not the case.

4.13 OTF-011 — XSS in Used By

Vulnerability ID: OTF-011

Vulnerability type: XSS

Threat level: Low

Description:

The Used By field incorrectly validates input that results in Cross-Site-Scripting (XSS).

Technical description:

Add XSS payload to Fundtype:

Findings 43

Or add XSS payload to RFPs:

44 Radically Open Security B.V.

Public

The XSS can also be added to the following forms:

• Determinationform (/admin/determinations/determinationform/)

• Reviewform (/admin/review/reviewform/)

Impact:

This XSS can only be created and triggered by high privileged users (e.g staff and admin) making it a Low impact.

However it is still recommended to not allow XSS in the first place since a successful attack could lead to session hijack,

credential stealing, or infecting systems with malware.

Recommendation:

All user input as well as output to users must be strictly filtered. Within these checks it is necessary to implement filter

mechanisms that operate on a white list basis instead of a black list basis. It is recommended that parameters or input

Findings 45

fields that can only consist of numerical values are only accepted by the server if they are in fact numeric. All checks

have to be performed on the server and not on the client-side. To avoid cross-site scripting it is necessary to substitute

special characters like [;()”´`,<>/] for their HTML equivalents. It is not sufficient to only filter special HTML tags like "script"

because there exist countless alternatives to successfully exploit cross-site scripting vulnerabilities.

More information can be found at: https://www.owasp.org/index.php/Cross_Site_Scripting

4.14 OTF-012 — XSS in Reviewer Role.

Vulnerability ID: OTF-012

Vulnerability type: XSS

Threat level: Low

Description:

Cross-Site-Scripting (XSS) was found in Reviewer Role.

Technical description:

Add XSS Payload to Reviewer Role:

Result XSS:

46 Radically Open Security B.V.

https://www.owasp.org/index.php/Cross_Site_Scripting

Public

Impact:

This XSS can only be created and triggered by high privileged users (e.g staff and admin) making it a Low impact.

However it is still recommended to not allow XSS in the first place since a successful attack could lead to session hijack,

credential stealing, or infecting systems with malware.

Recommendation:

All user input as well as output to users must be strictly filtered. Within these checks it is necessary to implement filter

mechanisms that operate on a white list basis instead of a black list basis. It is recommended that parameters or input

fields that can only consist of numerical values are only accepted by the server if they are in fact numeric. All checks

have to be performed on the server and not on the client-side. To avoid cross-site scripting it is necessary to substitute

Findings 47

special characters like [;()”´`,<>/] for their HTML equivalents. It is not sufficient to only filter special HTML tags like "script"

because there exist countless alternatives to successfully exploit cross-site scripting vulnerabilities.

More information can be found at: https://www.owasp.org/index.php/Cross_Site_Scripting

4.15 OTF-014 — User Enumeration with Email Address Change

Vulnerability ID: OTF-014

Vulnerability type: User Enumeration

Threat level: Low

Description:

Valid users can be found by abusing the Profile Change Email address functionality.

Technical description:

Example of current logged in user:

No error is shown (which is expected behavior) when changing to a non-existing user :

48 Radically Open Security B.V.

https://www.owasp.org/index.php/Cross_Site_Scripting

Public

However, when changing to an existing user an error is shown which indicates that a user with this Email address

already exists:

Findings 49

Impact:

Valid usernames can be enumerated and used in further attacks.

Recommendation:

Modify the functionality to return only a generic response making it impossible to distinguish between a valid username

and an invalid username and implement a Captcha (see also finding OTF-006 (page 37)) .

4.16 OTF-015 — XSS in Review Form

Vulnerability ID: OTF-015

Vulnerability type: XSS

Threat level: Low

Description:

Cross-Site-Scripting (XSS) was found in the Review Forms.

Technical description:

Add XSS payload to Review Form:

50 Radically Open Security B.V.

Public

Findings 51

Impact:

This XSS can only be created and triggered by high privileged users (e.g staff and admin) making it a Low impact.

However it is still recommended to not allow XSS in the first place since a successful attack could lead to session hijack,

credential stealing, or infecting systems with malware.

Recommendation:

All user input as well as output to users must be strictly filtered. Within these checks it is necessary to implement filter

mechanisms that operate on a white list basis instead of a black list basis. It is recommended that parameters or input

fields that can only consist of numerical values are only accepted by the server if they are in fact numeric. All checks

have to be performed on the server and not on the client-side. To avoid cross-site scripting it is necessary to substitute

special characters like [;()”´`,<>/] for their HTML equivalents. It is not sufficient to only filter special HTML tags like "script"

because there exist countless alternatives to successfully exploit cross-site scripting vulnerabilities.

52 Radically Open Security B.V.

Public

More information can be found at: https://www.owasp.org/index.php/Cross_Site_Scripting

4.17 OTF-016 — Django SECRET_KEY not random

Vulnerability ID: OTF-016

Vulnerability type: Security Misconfiguration

Threat level: Low

Description:

The Django SECRET_KEY is hardcoded and using a default value.

Technical description:

The secret key is used for:

• All sessions if you are using any other session backend than django.contrib.sessions.backends.cache, or are

using the default get_session_auth_hash().

• All messages if you are using CookieStorage or FallbackStorage.

• All PasswordResetView tokens.

• Any usage of cryptographic signing, unless a different key is provided.

Findings 53

https://www.owasp.org/index.php/Cross_Site_Scripting

A random key can be created for instance with get_random_secret_key()

Client feedback:
The secret key in production is normally set as an environment variable. OTF has it set to a long random string, different

for each of the dev/test/sandbox/live environments.

The "CHANGEME" comes from the locale.py.example . This is a template, you need to copy it to locale.py for it

to be loaded by the system.

It is mostly for developers but it can be used on a production setup as well if you run your own server. But we strongly

recommend settings in production to be environment variables.

Impact:

Knowing the SECRET_KEY allows adversaries to generate their own signed values.

Recommendation:

• Automatically generate Strong Random Secret key instead of using a static key.

• An alternative (but less secure) is to show a warning message to the administrator and prevent the application to

(fully) work until the SECRET_KEY has been changed to something more secure.

54 Radically Open Security B.V.

Public

4.18 OTF-017 — Arbitrary Document File Upload

Vulnerability ID: OTF-017

Vulnerability type: Arbitrary File Upload

Threat level: Low

Description:

Arbitrary files can be uploaded using the Document File Upload functionality since there are no restrictions configured.

Technical description:

Upload Form:

Uploading a malicious executable:

Findings 55

File can be seen in the backend:

Or accessed by browsing the filesystem:

56 Radically Open Security B.V.

Public

Example of the Upload Functionality used in Project Support Documents:

Impact:

A staff member could open the arbitrary file and their pc could get infected with malware.

Recommendation:

Verify all upload functionality and make sure that arbitrary upload is not allowed.

In general, proper mitigation for insecure file upload usually involves a combination of various approaches:

• Blacklisting of dangerous file extensions

• Whitelisting of acceptable file types

• Content-Type entity in the header of the request indicates the Internet media type of the message content

• Using file recognizer that verifies file is of correct type

Findings 57

• Adding the “Content-Disposition: Attachment” and “X-Content-Type-Options: nosniff” headers to the response

of static files will secure the website against Flash or PDF-based cross-site content-hijacking attacks. It is

recommended that this practice be performed for all of the files that users need to download in all the modules that

deal with a file download. Although this method does not fully secure the website against attacks using Silverlight

or similar objects, it can mitigate the risk of using Adobe Flash and PDF objects, especially when uploading PDF

files is permitted.

• Instant anti-virus checking with a back-end script or service

A specific combination of approaches should consider technical and process constraints, also limitations imposed by the

application design. More info can be found at OWASP Unrestricted File Upload.

4.19 OTF-019 — Outdated Packages are in use.

Vulnerability ID: OTF-019

Vulnerability type: Outdated Software

Threat level: Low

Description:

Outdated Packages which contain known vulnerabilities are in use.

Technical description:

Results of the NPM audit report

npm audit report

braces <2.3.1
Regular Expression Denial of Service - https://npmjs.com/advisories/786
fix available via `npm audit fix --force`
Will install jest@27.0.6, which is a breaking change
node_modules/jest-haste-map/node_modules/braces
node_modules/jest-message-util/node_modules/braces
node_modules/jest-runtime/node_modules/braces
node_modules/jest/node_modules/braces
node_modules/test-exclude/node_modules/braces
 micromatch 0.2.0 - 2.3.11
 Depends on vulnerable versions of braces
 Depends on vulnerable versions of parse-glob
 node_modules/jest-haste-map/node_modules/micromatch
 node_modules/jest-message-util/node_modules/micromatch
 node_modules/jest-runtime/node_modules/micromatch
 node_modules/jest/node_modules/micromatch
 node_modules/test-exclude/node_modules/micromatch
 jest-cli 12.1.1-alpha.2935e14d || 12.1.2-alpha.6230044c - 24.8.0

58 Radically Open Security B.V.

https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload

Public

 Depends on vulnerable versions of jest-haste-map
 Depends on vulnerable versions of jest-message-util
 Depends on vulnerable versions of jest-runner
 Depends on vulnerable versions of jest-validate
 Depends on vulnerable versions of micromatch
 Depends on vulnerable versions of yargs
 node_modules/jest/node_modules/jest-cli
 jest 18.5.0-alpha.7da3df39 - 22.4.4 || 23.4.0 - 23.6.0
 Depends on vulnerable versions of jest-cli
 node_modules/jest
 jest-haste-map 16.1.0-alpha.691b0e22 - 24.0.0
 Depends on vulnerable versions of micromatch
 Depends on vulnerable versions of sane
 node_modules/jest-haste-map
 jest-runtime 12.1.1-alpha.2935e14d - 24.8.0
 Depends on vulnerable versions of babel-jest
 Depends on vulnerable versions of babel-plugin-istanbul
 Depends on vulnerable versions of jest-haste-map
 Depends on vulnerable versions of jest-util
 Depends on vulnerable versions of jest-validate
 Depends on vulnerable versions of micromatch
 Depends on vulnerable versions of yargs
 node_modules/jest-runtime
 jest-message-util 18.5.0-alpha.7da3df39 - 23.1.0 || 23.4.0 - 24.0.0-alpha.16
 Depends on vulnerable versions of micromatch
 node_modules/jest-message-util
 expect 21.0.0-beta.1 - 22.4.3 || 23.4.0 - 23.6.0
 Depends on vulnerable versions of jest-message-util
 node_modules/expect
 jest-jasmine2 18.5.0-alpha.7da3df39 - 22.4.4 || 23.4.0 - 23.6.0
 Depends on vulnerable versions of expect
 Depends on vulnerable versions of jest-message-util
 Depends on vulnerable versions of jest-util
 node_modules/jest-jasmine2
 jest-config 18.5.0-alpha.7da3df39 - 22.4.4 || 23.4.0 - 23.6.0
 Depends on vulnerable versions of jest-jasmine2
 Depends on vulnerable versions of jest-util
 Depends on vulnerable versions of jest-validate
 node_modules/jest-config
 jest-validate 22.4.0 - 22.4.4
 Depends on vulnerable versions of jest-config
 node_modules/jest-validate
 jest-runner 21.0.0-alpha.1 - 22.4.4 || 23.4.0 - 23.6.0
 Depends on vulnerable versions of jest-message-util
 node_modules/jest-runner
 jest-util 18.5.0-alpha.7da3df39 - 22.4.3 || 23.4.0
 Depends on vulnerable versions of jest-message-util
 node_modules/jest-util
 jest-environment-jsdom 18.5.0-alpha.7da3df39 - 22.4.3 || 23.4.0
 Depends on vulnerable versions of jest-util
 node_modules/jest-environment-jsdom
 jest-environment-node 18.5.0-alpha.7da3df39 - 22.4.3 || 23.4.0
 Depends on vulnerable versions of jest-util
 node_modules/jest-environment-node
 test-exclude <=4.2.3
 Depends on vulnerable versions of micromatch
 node_modules/test-exclude
 babel-plugin-istanbul <=5.0.0
 Depends on vulnerable versions of test-exclude
 node_modules/babel-plugin-istanbul
 babel-jest 14.2.0-alpha.ca8bfb6e - 24.0.0-alpha.16

Findings 59

 Depends on vulnerable versions of babel-plugin-istanbul
 node_modules/babel-jest
 node_modules/jest-runtime/node_modules/babel-jest

glob-parent <5.1.2
Severity: moderate
Regular expression denial of service - https://npmjs.com/advisories/1751
fix available via `npm audit fix --force`
Will install webpack-dev-server@1.16.5, which is a breaking change
node_modules/glob-base/node_modules/glob-parent
node_modules/glob-parent
 chokidar 1.0.0-rc1 - 2.1.8
 Depends on vulnerable versions of glob-parent
 node_modules/chokidar
 glob-watcher >=3.0.0
 Depends on vulnerable versions of chokidar
 node_modules/glob-watcher
 gulp >=4.0.0
 Depends on vulnerable versions of glob-watcher
 node_modules/gulp
 watchpack-chokidar2 *
 Depends on vulnerable versions of chokidar
 node_modules/watchpack-chokidar2
 watchpack 1.7.2 - 1.7.5
 Depends on vulnerable versions of watchpack-chokidar2
 node_modules/watchpack
 webpack 4.44.0 - 4.46.0
 Depends on vulnerable versions of watchpack
 node_modules/webpack
 webpack-dev-server 2.0.0-beta - 3.11.2
 Depends on vulnerable versions of chokidar
 node_modules/webpack-dev-server
 glob-base *
 Depends on vulnerable versions of glob-parent
 node_modules/glob-base
 parse-glob >=2.1.0
 Depends on vulnerable versions of glob-base
 node_modules/parse-glob
 micromatch 0.2.0 - 2.3.11
 Depends on vulnerable versions of braces
 Depends on vulnerable versions of parse-glob
 node_modules/jest-haste-map/node_modules/micromatch
 node_modules/jest-message-util/node_modules/micromatch
 node_modules/jest-runtime/node_modules/micromatch
 node_modules/jest/node_modules/micromatch
 node_modules/test-exclude/node_modules/micromatch
 jest-cli 12.1.1-alpha.2935e14d || 12.1.2-alpha.6230044c - 24.8.0
 Depends on vulnerable versions of jest-haste-map
 Depends on vulnerable versions of jest-message-util
 Depends on vulnerable versions of jest-runner
 Depends on vulnerable versions of jest-validate
 Depends on vulnerable versions of micromatch
 Depends on vulnerable versions of yargs
 node_modules/jest/node_modules/jest-cli
 jest 18.5.0-alpha.7da3df39 - 22.4.4 || 23.4.0 - 23.6.0
 Depends on vulnerable versions of jest-cli
 node_modules/jest
 jest-haste-map 16.1.0-alpha.691b0e22 - 24.0.0
 Depends on vulnerable versions of micromatch
 Depends on vulnerable versions of sane
 node_modules/jest-haste-map

60 Radically Open Security B.V.

Public

 jest-runtime 12.1.1-alpha.2935e14d - 24.8.0
 Depends on vulnerable versions of babel-jest
 Depends on vulnerable versions of babel-plugin-istanbul
 Depends on vulnerable versions of jest-haste-map
 Depends on vulnerable versions of jest-util
 Depends on vulnerable versions of jest-validate
 Depends on vulnerable versions of micromatch
 Depends on vulnerable versions of yargs
 node_modules/jest-runtime
 jest-message-util 18.5.0-alpha.7da3df39 - 23.1.0 || 23.4.0 - 24.0.0-alpha.16
 Depends on vulnerable versions of micromatch
 node_modules/jest-message-util
 expect 21.0.0-beta.1 - 22.4.3 || 23.4.0 - 23.6.0
 Depends on vulnerable versions of jest-message-util
 node_modules/expect
 jest-jasmine2 18.5.0-alpha.7da3df39 - 22.4.4 || 23.4.0 - 23.6.0
 Depends on vulnerable versions of expect
 Depends on vulnerable versions of jest-message-util
 Depends on vulnerable versions of jest-util
 node_modules/jest-jasmine2
 jest-config 18.5.0-alpha.7da3df39 - 22.4.4 || 23.4.0 - 23.6.0
 Depends on vulnerable versions of jest-jasmine2
 Depends on vulnerable versions of jest-util
 Depends on vulnerable versions of jest-validate
 node_modules/jest-config
 jest-validate 22.4.0 - 22.4.4
 Depends on vulnerable versions of jest-config
 node_modules/jest-validate
 jest-runner 21.0.0-alpha.1 - 22.4.4 || 23.4.0 - 23.6.0
 Depends on vulnerable versions of jest-message-util
 node_modules/jest-runner
 jest-util 18.5.0-alpha.7da3df39 - 22.4.3 || 23.4.0
 Depends on vulnerable versions of jest-message-util
 node_modules/jest-util
 jest-environment-jsdom 18.5.0-alpha.7da3df39 - 22.4.3 || 23.4.0
 Depends on vulnerable versions of jest-util
 node_modules/jest-environment-jsdom
 jest-environment-node 18.5.0-alpha.7da3df39 - 22.4.3 || 23.4.0
 Depends on vulnerable versions of jest-util
 node_modules/jest-environment-node
 test-exclude <=4.2.3
 Depends on vulnerable versions of micromatch
 node_modules/test-exclude
 babel-plugin-istanbul <=5.0.0
 Depends on vulnerable versions of test-exclude
 node_modules/babel-plugin-istanbul
 babel-jest 14.2.0-alpha.ca8bfb6e - 24.0.0-alpha.16
 Depends on vulnerable versions of babel-plugin-istanbul
 node_modules/babel-jest
 node_modules/jest-runtime/node_modules/babel-jest
 glob-stream >=5.3.0
 Depends on vulnerable versions of glob-parent
 node_modules/glob-stream
 vinyl-fs >=2.4.2
 Depends on vulnerable versions of glob-stream
 node_modules/vinyl-fs

mem <4.0.0
Denial of Service - https://npmjs.com/advisories/1084
fix available via `npm audit fix --force`
Will install jest@27.0.6, which is a breaking change

Findings 61

node_modules/mem
 os-locale 2.0.0 - 3.0.0
 Depends on vulnerable versions of mem
 node_modules/jest-runtime/node_modules/os-locale
 node_modules/jest/node_modules/os-locale
 yargs 4.0.0-alpha1 - 12.0.5 || 14.1.0 || 15.0.0 - 15.2.0
 Depends on vulnerable versions of os-locale
 Depends on vulnerable versions of yargs-parser
 node_modules/jest-runtime/node_modules/yargs
 node_modules/jest/node_modules/yargs
 node_modules/yargs
 gulp-cli >=2.0.0
 Depends on vulnerable versions of yargs
 node_modules/gulp/node_modules/gulp-cli
 jest-cli 12.1.1-alpha.2935e14d || 12.1.2-alpha.6230044c - 24.8.0
 Depends on vulnerable versions of jest-haste-map
 Depends on vulnerable versions of jest-message-util
 Depends on vulnerable versions of jest-runner
 Depends on vulnerable versions of jest-validate
 Depends on vulnerable versions of micromatch
 Depends on vulnerable versions of yargs
 node_modules/jest/node_modules/jest-cli
 jest 18.5.0-alpha.7da3df39 - 22.4.4 || 23.4.0 - 23.6.0
 Depends on vulnerable versions of jest-cli
 node_modules/jest
 jest-runtime 12.1.1-alpha.2935e14d - 24.8.0
 Depends on vulnerable versions of babel-jest
 Depends on vulnerable versions of babel-plugin-istanbul
 Depends on vulnerable versions of jest-haste-map
 Depends on vulnerable versions of jest-util
 Depends on vulnerable versions of jest-validate
 Depends on vulnerable versions of micromatch
 Depends on vulnerable versions of yargs
 node_modules/jest-runtime

merge <2.1.1
Severity: high
Prototype Pollution - https://npmjs.com/advisories/1666
fix available via `npm audit fix --force`
Will install jest@27.0.6, which is a breaking change
node_modules/merge
 exec-sh <=0.3.1
 Depends on vulnerable versions of merge
 node_modules/exec-sh
 sane 1.0.4 - 4.0.2
 Depends on vulnerable versions of exec-sh
 Depends on vulnerable versions of watch
 node_modules/sane
 jest-haste-map 16.1.0-alpha.691b0e22 - 24.0.0
 Depends on vulnerable versions of micromatch
 Depends on vulnerable versions of sane
 node_modules/jest-haste-map
 jest-cli 12.1.1-alpha.2935e14d || 12.1.2-alpha.6230044c - 24.8.0
 Depends on vulnerable versions of jest-haste-map
 Depends on vulnerable versions of jest-message-util
 Depends on vulnerable versions of jest-runner
 Depends on vulnerable versions of jest-validate
 Depends on vulnerable versions of micromatch
 Depends on vulnerable versions of yargs
 node_modules/jest/node_modules/jest-cli
 jest 18.5.0-alpha.7da3df39 - 22.4.4 || 23.4.0 - 23.6.0

62 Radically Open Security B.V.

Public

 Depends on vulnerable versions of jest-cli
 node_modules/jest
 jest-runtime 12.1.1-alpha.2935e14d - 24.8.0
 Depends on vulnerable versions of babel-jest
 Depends on vulnerable versions of babel-plugin-istanbul
 Depends on vulnerable versions of jest-haste-map
 Depends on vulnerable versions of jest-util
 Depends on vulnerable versions of jest-validate
 Depends on vulnerable versions of micromatch
 Depends on vulnerable versions of yargs
 node_modules/jest-runtime
 watch >=0.14.0
 Depends on vulnerable versions of exec-sh
 node_modules/watch
 sass-lint *
 Depends on vulnerable versions of gonzales-pe-sl
 Depends on vulnerable versions of merge
 node_modules/sass-lint
 gulp-sass-lint *
 Depends on vulnerable versions of sass-lint
 node_modules/gulp-sass-lint

minimist <0.2.1 || >=1.0.0 <1.2.3
Prototype Pollution - https://npmjs.com/advisories/1179
No fix available
node_modules/gonzales-pe-sl/node_modules/minimist
 gonzales-pe-sl *
 Depends on vulnerable versions of minimist
 node_modules/gonzales-pe-sl
 sass-lint *
 Depends on vulnerable versions of gonzales-pe-sl
 Depends on vulnerable versions of merge
 node_modules/sass-lint
 gulp-sass-lint *
 Depends on vulnerable versions of sass-lint
 node_modules/gulp-sass-lint

yargs-parser <=13.1.1 || 14.0.0 - 15.0.0 || 16.0.0 - 18.1.1
Prototype Pollution - https://npmjs.com/advisories/1500
fix available via `npm audit fix --force`
Will install jest@27.0.6, which is a breaking change
node_modules/jest-runtime/node_modules/yargs-parser
node_modules/jest/node_modules/yargs-parser
node_modules/yargs-parser
 yargs 4.0.0-alpha1 - 12.0.5 || 14.1.0 || 15.0.0 - 15.2.0
 Depends on vulnerable versions of os-locale
 Depends on vulnerable versions of yargs-parser
 node_modules/jest-runtime/node_modules/yargs
 node_modules/jest/node_modules/yargs
 node_modules/yargs
 gulp-cli >=2.0.0
 Depends on vulnerable versions of yargs
 node_modules/gulp/node_modules/gulp-cli
 jest-cli 12.1.1-alpha.2935e14d || 12.1.2-alpha.6230044c - 24.8.0
 Depends on vulnerable versions of jest-haste-map
 Depends on vulnerable versions of jest-message-util
 Depends on vulnerable versions of jest-runner
 Depends on vulnerable versions of jest-validate
 Depends on vulnerable versions of micromatch
 Depends on vulnerable versions of yargs
 node_modules/jest/node_modules/jest-cli

Findings 63

 jest 18.5.0-alpha.7da3df39 - 22.4.4 || 23.4.0 - 23.6.0
 Depends on vulnerable versions of jest-cli
 node_modules/jest
 jest-runtime 12.1.1-alpha.2935e14d - 24.8.0
 Depends on vulnerable versions of babel-jest
 Depends on vulnerable versions of babel-plugin-istanbul
 Depends on vulnerable versions of jest-haste-map
 Depends on vulnerable versions of jest-util
 Depends on vulnerable versions of jest-validate
 Depends on vulnerable versions of micromatch
 Depends on vulnerable versions of yargs
 node_modules/jest-runtime

43 vulnerabilities (23 low, 13 moderate, 7 high)

To address issues that do not require attention, run:
 npm audit fix

To address all issues possible (including breaking changes), run:
 npm audit fix --force

Some issues need review, and may require choosing
a different dependency.

Impact:

Low, since it appears that no functionality is used in the current code that could exploit any of the vulnerabilities.

Recommendation:

It is still recommended to always use the latest version where possible.

64 Radically Open Security B.V.

Public

5 Non-Findings

In this section we list some of the things that were tried but turned out to be dead ends.

5.1 NF-020 — Reviewers are able to see all submissions.

Applicant submits a submission:

Reviewer does not see this submission in the All Submission Overview:

However, by changing the submission id in the URL, access is still allowed.

Non-Findings 65

Note that the user with the reviewer authorisations was not able to make any changes such as updating the status,

assign users, check revisions, add to staff flagged list/determination/review or change the screening status.

Client feedback:

By default reviewers can view all submissions. The assigning part was only to direct reviewers.

We have added a setting to change this default at "/admin/settings/funds/reviewersettings/".

66 Radically Open Security B.V.

Public

6 Future Work

• Retest of findings

When mitigations for the vulnerabilities described in this report have been deployed, a repeat test should be

performed to ensure that they are effective and have not introduced other security problems.

• Regular security assessments

Security is an ongoing process and not a product, so we advise undertaking regular security assessments and

penetration tests, ideally prior to every major release or every quarter.

Future Work 67

7 Conclusion

We discovered 1 Elevated, 5 Moderate and 13 Low-severity issues during this penetration test.

The Elevated issue (which has been resolved) OTF-010 (page 16) did allow an unauthenticated or low privileged user

to send a malicious XSS payload to high privileged users. This could have resulted in gaining access to high privileged

accounts which would have lead to accessing restricted data.

The Moderate and Low issues do not have a major immediate risk but when resolved would make it harder for

adversaries to succeed in getting access to the privileged information.

We recommend fixing all of the issues found and then performing a retest in order to ensure that mitigations are effective

and that no new vulnerabilities have been introduced.

Finally, we want to emphasize that security is a process – this penetration test is just a one-time snapshot. Security

posture must be continuously evaluated and improved. Regular audits and ongoing improvements are essential in order

to maintain control of your corporate information security. We hope that this pentest report (and the detailed explanations

of our findings) will contribute meaningfully towards that end.

Please don't hesitate to let us know if you have any further questions, or need further clarification on anything in this

report.

68 Radically Open Security B.V.

Public

Appendix 1 Testing team

Stefan Vink Stefan is an IT professional with a passion for IT security and automation. With 20 years
hands-on experience in a diverse range of IT roles such as automation / scripting /
monitoring / web development / system and network management in Windows and
Linux environments. He has worked for organisations such as the Central Bank of the
Netherlands (DNB), is MCITP, CCNA, LPIC, OSCP certified, and has passed the CISSP
exam. He loves to travel, hike, play tennis & chess, automation, and lives with his wife
and kids in Melbourne, Australia.

Melanie Rieback Melanie Rieback is a former Asst. Prof. of Computer Science from the VU, who is also
the co-founder/CEO of Radically Open Security.

Front page image by Slava (https://secure.flickr.com/photos/slava/496607907/), "Mango HaX0ring",
Image styling by Patricia Piolon, https://creativecommons.org/licenses/by-sa/2.0/legalcode.

Testing team 69

